Jumat, 07 Maret 2014

Tracking and Data Relay Satellite Launch Lights Up the Night Sky


Tracking and Data Relay Satellite Launch Lights Up the Night Sky

A United Launch Alliance Atlas V rocket lights up the night sky over Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida as it carries NASA's Tracking and Data Relay Satellite, or TDRS-L, to Earth orbit. Launch was at 9:33 p.m. EST on Thursday, Jan. 23 during a 40-minute launch window.
The TDRS-L spacecraft is the second of three new satellites designed to ensure vital operational continuity for NASA by expanding the lifespan of the Tracking and Data Relay Satellite System (TDRSS) fleet, which consists of eight satellites in geosynchronous orbit. The spacecraft provide tracking, telemetry, command and high-bandwidth data return services for numerous science and human exploration missions orbiting Earth. These include NASA's Hubble Space Telescope and the International Space Station. TDRS-L has a high-performance solar panel designed for more spacecraft power to meet the growing S-band communications requirements. TDRSS is one of three NASA Space Communications and Navigation (SCaN) networks providing space communications to NASA’s missions.

Set of NanoRacks CubeSats Deployed From International Space Station


Set of NanoRacks CubeSats Deployed From International Space 
Station

ISS038-E-045009 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. Station solar array panels, Earth’s horizon and the blackness of space provide the backdrop for the scene.

Crawler-Transporter Passes Milestone Test at NASA's Kennedy Space Center


Crawler-Transporter Passes Milestone Test at NASA's Kennedy Space 
Center

The crawler-transporter that will carry NASA’s Space Launch System (SLS) and Orion spacecraft to Launch Pad 39B for launch on Exploration Mission-1 in 2017 recently passed the first phase of an important milestone test at Kennedy Space Center in Florida. The Ground Systems Development and Operations Program completed testing of new traction roller bearings on crawler-transporter 2 (CT-2), on two of the massive vehicle’s truck sections, A and C, in late January. The new roller bearing assemblies that were installed on one side of the crawler are visible in this Jan. 31, 2014 image. CT-2 returned to the Vehicle Assembly Building (VAB) at Kennedy Space Center, where work continues to install new roller bearing assemblies on the B and D truck sections.
For more than 45 years the crawler-transporters were used to transport the mobile launcher platform and the Apollo-Saturn V rockets and, later, space shuttles to Launch Pads 39A and B. Upgrades to CT-2 are necessary in order to increase the lifted-load capacity from 12 million to 18 million pounds to support the weight of the mobile launcher and future launch vehicles, including the SLS and Orion.

Astronaut John H. Glenn Jr. With Mercury "Friendship 7" Spacecraft



Astronaut John H. Glenn Jr., pilot of the Mercury Atlas 6 (MA-6) spaceflight, poses for a photo with the Mercury "Friendship 7" spacecraft during preflight activities. On Feb. 20, 1962, Glenn piloted the Mercury-Atlas 6 "Friendship 7" spacecraft on the first manned orbital mission of the United States. Launched from Kennedy Space Center, Fla., he completed a successful three-orbit mission around the earth, reaching a maximum altitude (apogee) of approximately 162 statute miles and an orbital velocity of approximately 17,500 miles per hour. Glenn's "Friendship 7" Mercury spacecraft landed approximately 800 miles southeast of KSC in the vicinity of Grand Turk Island. Mission duration from launch to impact was 4 hours, 55 minutes, and 23 seconds.

The Shocking Behavior of a Speedy Star

The Shocking Behavior of a Speedy Star

Roguish runaway stars can have a big impact on their surroundings as they plunge through the Milky Way galaxy. Their high-speed encounters shock the galaxy, creating arcs, as seen in this newly released image from NASA’s Spitzer Space Telescope.
In this case, the speedster star is known as Kappa Cassiopeiae, or HD 2905 to astronomers. It is a massive, hot supergiant moving at around 2.5 million mph relative to its neighbors (1,100 kilometers per second). But what really makes the star stand out in this image is the surrounding, streaky red glow of material in its path. Such structures are called bow shocks, and they can often be seen in front of the fastest, most massive stars in the galaxy.
Bow shocks form where the magnetic fields and wind of particles flowing off a star collide with the diffuse, and usually invisible, gas and dust that fill the space between stars. How these shocks light up tells astronomers about the conditions around the star and in space. Slow-moving stars like our sun have bow shocks that are nearly invisible at all wavelengths of light, but fast stars like Kappa Cassiopeiae create shocks that can be seen by Spitzer’s infrared detectors.

Coronal Loops in an Active Region of the Sun

Coronal Loops in an Active Region of the Sun

An active region of the sun just rotating into the view of NASA's Solar Dynamics Observatory gives a profile view of coronal loops over about a two-day period, from Feb. 8-10, 2014. Coronal loops are found around sunspots and in active regions. These structures are associated with the closed magnetic field lines that connect magnetic regions on the solar surface. Many coronal loops last for days or weeks, but most change quite rapidly. This image was taken in extreme ultraviolet light.

Martian Dunes Flying in Formation

Martian Dunes Flying in Formation

Migratory birds and military aircraft often fly in a V-shaped formation. The “V” formation greatly boosts the efficiency and range of flying birds, because all except the first fly in the upward motion of air -- called upwash -- from the wingtip vortices of the bird ahead.
In this image of a dune field on Mars in a large crater near Mawrth Vallis, some of the dunes appear to be in a V-shaped formation. For dune fields, the spacing of individual dunes is a function of sand supply, wind speed, and topography.
This image was acquired by the HiRISE camera aboard NASA's Mars Reconnaissance Orbiter on Dec. 30, 2013. The University of Arizona, Tucson, operates the HiRISE camera, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter Project for the NASA Science Mission Directorate, Washington.

NASA Merilis Jadwal Fenomena Hujan Meteor 2014

http://astronesia.blogspot.com/  
Meteor Geminid 2013 Dan Komet Lovejoy Di Langit Missouri

AstroNesia ~ Tahun baru membawa serta sebuah kesempatan baru untuk menyaksikan fenomena hujan meteor,dan NASA telah merilis daftar hujan meteor 2014 yang paling mudah untuk diamati.

Fenomena hujan meteor ini pertama kali di buka oleh hujan meteor Quadranids,sebuah hujan meteor yang kurang terkenal yang namanya diambil dari konstelasinya yang sekarang sudah punah.Quadranids akan mencapai puncaknya pada dini hari tanggal 3 Januari, yang akan menampilkan sekitar 80 meteor per jam dengan kecepatan lebih dari 25 kilometer per detik.

Nama hujan meteor ini berasal dari Quadrans Muralis,sebuah konstelasi usang yang sekarang merupakan bagian dari Boötes. Titik radiant hujan meteor ini berasal dari ujung utara konstelasi Bootes, yang berarti hanya pengamat yang tinggal di belahan bumi utara akan dapat melihat hujan meteor ini di langit malam.Untungnya Ustream live feed akan menyiarkan peristiwa tersebut secara online di internet.

Dua hujan meteor berbeda akan hadir di bulan April.Hujan meteor pertama adalah Lyrids, yang aktif dari tanggal 16-25 April dan akan mencapai puncaknya pada tanggal 21-22 April.Kemudian akan diikuti oleh Eta Aquarid,yang mulai aktif tanggal 19 April dan mencapai puncaknya tanggal 5-6 Mei.

Lyrids berisi beberapa meteor terang, dan NASA mengatakan bahwa cahaya dari bulan bungkuk akan membuatnya sulit untuk dilihat,sementara langit gelap mungkin akan hadir saat hujan meteor Eta Aquarid untuk memberikan pertunjukan yang baik (setidaknya, di belahan bumi selatan, di mana sebagian besar fenomena ini akan terlihat).

Southern Delta Aquarid akan terlihat dari tanggal 12 Juli-23 Agustus, dengan puncaknya akan melesatkan 20 meteor per jam pada tanggal 28-29 Juli.NASA mengatakan bahwa tahun 2014 harusnya menjadi tahun yang baik bagi hujan meteor ini karena akan terjadi saat new moon.Fenomena ini bagus dilihat dari tempat gelap saat tengah malam.

Kemudian akan ada hujan meteor Perseids,NASA menyebutnya "salah satu hujan meteor terbaik untuk diamati,karena menghasilkan meteor cepat dan cerah yang kadang meninggalkan jejak api di belakangnya.Hujan meteor ini akan aktif dari 17 Juli-24 Agustus dan akan mencapai puncaknya pada 12-13 Agustus. Sayangnya, meskipun reputasinya mantap, NASA mengatakan hujan meteor ini akan kurang terlihat tahun 2014 karena adanya bulan yang hampir purnama.

Hujan meteor selanjutnya akan diisi oleh Orionids, Leonids, dan Geminid.

Orionids aktif dari 2 Oktober - 7 November, mencapai puncaknya pada 21-22 Oktober, dan NASA mengatakan ini harus menjadi "tahun yang menguntungkan" khususnya hujan meteor ini karena tidak akan ada gangguan dari bulan.Orionids dihasilkan oleh dari puing-puing komet Halley.

Leonids akan hadir tanggal 6-30 November dan mencapai puncaknya tanggal 17-18.Kemudian ada Geminid,hujan meteor Geminids adalah hujan meteor terbaik dan yang paling dapat diandalkan dari hujan meteor tahunan menurut NASA."Fenomena ini dianggap salah satu peluang terbaik bagi pemirsa muda yang tidak dapat menunggu sampai larut malam, karena hal itu akan terjadi di sekitar 9 atau 10 malam waktu setempat.Hujan meteor ini mencapai puncaknya tanggal 13-14 Desember.
Semoga Menambah Pengetahuan Kita Semua